Ta strona używa plików cookies.          Bezpieczeństwo w sieci AKCEPTUJĘ
header1
header2
header3
header4

Wymagania  edukacyjne  na poszczególne oceny przygotowane na podstawie treści zawartych w podstawie programowej, programie nauczania oraz podręczniku dla klasy siódmej szkoły podstawowej Chemia Nowej Ery

Wyróżnione wymagania programowe odpowiadają wymaganiom ogólnym i szczegółowym zawartym w treściach nauczania podstawy programowej.

 

  1. Substancje i ich przemiany

 

Ocena dopuszczająca

[1]

Ocena dostateczna

[1 + 2]

Ocena dobra

[1 + 2 + 3]

Ocena bardzo dobra

[1 + 2 + 3 + 4]

Uczeń:

– zalicza chemię do nauk przyrodniczych

stosuje zasady bezpieczeństwa obowiązujące w pracowni chemicznej

nazywa wybrane elementy szkła i sprzętu laboratoryjnego oraz określa ich przeznaczenie

– zna sposoby opisywania doświadczeń chemicznych

opisuje właściwości substancji będących głównymi składnikami produktów stosowanych na co dzień

– definiuje pojęcie gęstość

– podaje wzór na gęstość

przeprowadza proste obliczenia

z wykorzystaniem pojęć masa, gęstość, objętość

– wymienia jednostki gęstości

– odróżnia właściwości fizyczne od chemicznych

– definiuje pojęcie mieszanina substancji

opisuje cechy mieszanin jednorodnych

i niejednorodnych

– podaje przykłady mieszanin

opisuje proste metody rozdzielania mieszanin na składniki

– definiuje pojęcia zjawisko fizyczne
 i reakcja chemiczna

podaje przykłady zjawisk fizycznych

i reakcji chemicznych zachodzących

w otoczeniu człowieka

– definiuje pojęcia pierwiastek chemiczny

i związek chemiczny

– dzieli substancje chemiczne na proste

i złożone oraz na pierwiastki i związki chemiczne

– podaje przykłady związków chemicznych

dzieli pierwiastki chemiczne na

metale i niemetale

– podaje przykłady pierwiastków chemicznych (metali i niemetali)

odróżnia metale i niemetale na podstawie ich właściwości

opisuje, na czym polegają rdzewienie
   i korozja

– wymienia niektóre czynniki powodujące korozję

posługuje się symbolami chemicznymi pierwiastków (H, O, N, Cl, S, C, P, Si, Na, K, Ca, Mg, Fe, Zn, Cu, Al, Pb, Sn, Ag, Hg)

Uczeń:

– omawia, czym zajmuje się chemia

– wyjaśnia, dlaczego chemia jest nauką

przydatną ludziom

– wyjaśnia, czym są obserwacje, a czym wnioski z doświadczenia

– przelicza jednostki (masy, objętości, gęstości)

– wyjaśnia, czym ciało fizyczne różni się

od substancji

– opisuje właściwości substancji

– wymienia i wyjaśnia podstawowe sposoby

rozdzielania mieszanin na składniki

sporządza mieszaninę

dobiera metodę rozdzielania mieszaniny na składniki

opisuje i porównuje zjawisko fizyczne

i reakcję chemiczną

projektuje doświadczenia ilustrujące zjawisko fizyczne i reakcję chemiczną

– definiuje pojęcie stopy metali

– podaje przykłady zjawisk fizycznych

i reakcji chemicznych zachodzących

w otoczeniu człowieka

– wyjaśnia potrzebę wprowadzenia symboli

chemicznych

– rozpoznaje pierwiastki i związki chemiczne

wyjaśnia różnicę między pierwiastkiem, związkiem chemicznym i mieszaniną

proponuje sposoby zabezpieczenia przed rdzewieniem przedmiotów wykonanych
z żelaza

Uczeń:

– podaje zastosowania wybranego szkła i sprzętu laboratoryjnego

– identyfikuje substancje na podstawie

podanych właściwość

przeprowadza obliczenia

z wykorzystaniem pojęć: masa, gęstość, objętość

– przelicza jednostki

– podaje sposób rozdzielenia wskazanej

mieszaniny na składniki

wskazuje różnice między właściwościami fizycznymi składników mieszaniny, które umożliwiają jej rozdzielenie

– projektuje doświadczenia ilustrujące reakcję chemiczną i formułuje wnioski

– wskazuje w podanych przykładach

reakcję chemiczną i zjawisko fizyczne

– wskazuje wśród różnych substancji mieszaninę i związek chemiczny

– wyjaśnia różnicę między mieszaniną

a związkiem chemicznym

– odszukuje w układzie okresowym pierwiastków podane pierwiastki chemiczne

– opisuje doświadczenia wykonywane na lekcji

– przeprowadza wybrane doświadczenia

 

Uczeń:

– omawia podział chemii na organiczną
i nieorganiczną

– definiuje pojęcie patyna

– projektuje doświadczenie o podanym tytule (rysuje schemat, zapisuje obserwacje i formułuje wnioski)

– przeprowadza doświadczenia z działu

Substancje i ich przemiany

– projektuje i przewiduje wyniki doświadczeń na podstawie posiadanej wiedzy

 

 


Przykłady wiadomości i umiejętności wykraczające poza treści wymagań podstawy programowej; ich spełnienie może być warunkiem wystawienia oceny celującej.
Uczeń:

– opisuje zasadę rozdziału mieszanin metodą chromatografii

– opisuje sposób rozdzielania na składniki bardziej złożonych mieszanin z wykorzystaniem metod spoza podstawy programowej

– wykonuje obliczenia – zadania dotyczące mieszanin

 


Składniki powietrza i rodzaje przemian, jakim ulegają

 

Ocena dopuszczająca

[1]

Ocena dostateczna

[1 + 2]

Ocena dobra

[1 + 2 + 3]

Ocena bardzo dobra

[1 + 2 + 3 + 4]

Uczeń:

opisuje skład i właściwości powietrza

– określa, co to są stałe i zmienne składniki powietrza

opisuje właściwości fizyczne i chemiczne tlenu, tlenku węgla(IV), wodoru, azotu oraz właściwości fizyczne gazów szlachetnych

– podaje, że woda jest związkiem

chemicznym wodoru i tlenu

tłumaczy, na czym polega zmiana stanu skupienia na przykładzie wody

– definiuje pojęcie wodorki

omawia obieg tlenu i tlenku węgla(IV) w przyrodzie

– określa znaczenie powietrza, wody, tlenu, tlenku węgla(IV)

– podaje, jak można wykryć tlenek węgla(IV)

– określa, jak zachowują się substancje

higroskopijne

opisuje, na czym polegają reakcje syntezy, analizy, wymiany

– omawia, na czym polega spalanie

– definiuje pojęcia substrat i produkt reakcji chemicznej

wskazuje substraty i produkty reakcji chemicznej

określa typy reakcji chemicznych

– określa, co to są tlenki i zna ich podział

wymienia podstawowe źródła, rodzaje i skutki zanieczyszczeń powietrza

wskazuje różnicę między reakcjami egzo- i endoenergetyczną

– podaje przykłady reakcji egzo-

i endoenergetycznych

– wymienia niektóre efekty towarzyszące

reakcjom chemicznym

Uczeń:

– projektuje i przeprowadza doświadczenie potwierdzające, że powietrze jest mieszaniną jednorodną gazów

– wymienia stałe i zmienne składniki powietrza

– oblicza przybliżoną objętość tlenu i azotu,  np. w sali lekcyjnej

– opisuje, jak można otrzymać tlen

– opisuje właściwości fizyczne i chemiczne  gazów szlachetnych, azotu

podaje przykłady wodorków niemetali

– wyjaśnia, na czym polega proces fotosyntezy

wymienia niektóre zastosowania azotu, gazów szlachetnych, tlenku węgla(IV), tlenu, wodoru

– podaje sposób otrzymywania tlenku węgla(IV) (na przykładzie reakcji węgla z tlenem)

– definiuje pojęcie reakcja charakterystyczna

– planuje doświadczenie umożliwiające wykrycie obecności tlenku węgla(IV) w powietrzu wydychanym z płuc

– wyjaśnia, co to jest efekt cieplarniany

– opisuje rolę wody i pary wodnej w przyrodzie

– wymienia właściwości wody

– wyjaśnia pojęcie higroskopijność

– zapisuje słownie przebieg reakcji chemicznej

– wskazuje w zapisie słownym przebiegu reakcji chemicznej substraty i produkty, pierwiastki i związki chemiczne

– opisuje, na czym polega powstawanie dziury ozonowej i kwaśnych opadów

– podaje sposób otrzymywania wodoru (w reakcji kwasu chlorowodorowego z metalem)

− opisuje sposób identyfikowania gazów: wodoru, tlenu, tlenku węgla(IV)

wymienia źródła, rodzaje i skutki zanieczyszczeń powietrza

wymienia niektóre sposoby postępowania pozwalające chronić powietrze przed zanieczyszczeniami

definiuje pojęcia reakcje egzo- i endoenergetyczne

Uczeń:

– określa, które składniki powietrza są stałe,

a które zmienne

– wykonuje obliczenia dotyczące zawartości procentowej substancji występujących w powietrzu

– wykrywa obecność tlenku węgla(IV)

– opisuje właściwości tlenku węgla(II)

– wyjaśnia rolę procesu fotosyntezy w naszym życiu

– podaje przykłady substancji szkodliwych dla środowiska

– wyjaśnia, skąd się biorą kwaśne opady

– określa zagrożenia wynikające z efektu

cieplarnianego, dziury ozonowej, kwaśnych opadów

proponuje sposoby zapobiegania powiększaniu się dziury ozonowej

i ograniczenia powstawania kwaśnych opadów

projektuje doświadczenia, w których otrzyma tlen, tlenek węgla(IV), wodór

– projektuje doświadczenia, w których zbada właściwości tlenu, tlenku węgla(IV), wodoru

– zapisuje słownie przebieg różnych rodzajów reakcji chemicznych

podaje przykłady różnych typów reakcji chemicznych

– wykazuje obecność pary wodnej

w powietrzu

– omawia sposoby otrzymywania wodoru

– podaje przykłady reakcji egzo-

i endoenergetycznych

– zalicza przeprowadzone na lekcjach reakcje do egzo- lub endoenergetycznych

Uczeń:

– otrzymuje tlenek węgla(IV) w reakcji węglanu wapnia z kwasem chlorowodorowym

– wymienia różne sposoby otrzymywania tlenu, tlenku węgla(IV), wodoru

– projektuje doświadczenia dotyczące powietrza i jego składników

– uzasadnia, na podstawie reakcji magnezu z tlenkiem węgla(IV), że tlenek węgla(IV) jest związkiem chemicznym węgla i tlenu

– uzasadnia, na podstawie reakcji magnezu  z parą wodną, że woda jest związkiem chemicznym tlenu i wodoru

planuje sposoby postępowania umożliwiające ochronę powietrza przed zanieczyszczeniami

– identyfikuje substancje na podstawie schematów reakcji chemicznych

– wykazuje zależność między rozwojem cywilizacji a występowaniem zagrożeń, np. podaje przykłady dziedzin życia, których rozwój powoduje negatywne skutki dla środowiska przyrodniczego

 

Przykłady wiadomości i umiejętności wykraczające poza treści wymagań podstawy programowej; ich spełnienie może być warunkiem wystawienia oceny celującej. Uczeń:

– opisuje destylację skroplonego powietrza


Atomy i cząsteczki

 

 

Ocena dopuszczająca

[1]

Ocena dostateczna

[1 + 2]

Ocena dobra

[1 + 2 + 3]

Ocena bardzo dobra

[1 + 2 + 3 + 4]

Uczeń:

– definiuje pojęcie materia

– definiuje pojęcie dyfuzji

– opisuje ziarnistą budowę materii

– opisuje, czym atom różni się od cząsteczki

– definiuje pojęcia: jednostka masy atomowej,

masa atomowa, masa cząsteczkowa

oblicza masę cząsteczkową prostych związków chemicznych

– opisuje i charakteryzuje skład atomu

pierwiastka chemicznego (jądro – protony i neutrony, powłoki elektronowe – elektrony)

– wyjaśni, co to są nukleony

– definiuje pojęcie elektrony walencyjne

– wyjaśnia, co to są liczba atomowa, liczba masowa

ustala liczbę protonów, elektronów, neutronów w atomie danego pierwiastka chemicznego, gdy znane są liczby atomowa i masowa

podaje, czym jest konfiguracja elektronowa

definiuje pojęcie izotop

– dokonuje podziału izotopów

wymienia najważniejsze dziedziny życia,
w których mają zastosowanie izotopy

– opisuje układ okresowy pierwiastków

chemicznych

– podaje treść prawa okresowości

– podaje, kto jest twórcą układu okresowego

pierwiastków chemicznych

odczytuje z układu okresowego podstawowe informacje o pierwiastkach chemicznych

– określa rodzaj pierwiastków (metal, niemetal) i podobieństwo właściwości pierwiastków w grupie

Uczeń:

planuje doświadczenie potwierdzające

ziarnistość budowy materii

wyjaśnia zjawisko dyfuzji

– podaje założenia teorii atomistyczno-

-cząsteczkowej budowy materii

– oblicza masy cząsteczkowe

– opisuje pierwiastek chemiczny jako zbiór atomów o danej liczbie atomowej Z

– wymienia rodzaje izotopów

– wyjaśnia różnice w budowie atomów

izotopów wodoru

wymienia dziedziny życia, w których stosuje się izotopy

– korzysta z układu okresowego pierwiastków

chemicznych

– wykorzystuje informacje odczytane z układu

okresowego pierwiastków chemicznych

– podaje maksymalną liczbę elektronów na

poszczególnych powłokach (K, L, M)

– zapisuje konfiguracje elektronowe

– rysuje modele atomów pierwiastków chemicznych

– określa, jak zmieniają się niektóre właściwości pierwiastków w grupie i okresie

 

Uczeń:

wyjaśnia różnice między pierwiastkiem

a związkiem chemicznym na podstawie założeń teorii atomistyczno-cząsteczkowej budowy materii

– oblicza masy cząsteczkowe związków chemicznych

– definiuje pojęcie masy atomowej jako średniej mas atomów danego pierwiastka, z uwzględnieniem jego składu izotopowego

– wymienia zastosowania różnych izotopów

– korzysta z informacji zawartych w układzie okresowym pierwiastków chemicznych

– oblicza maksymalną liczbę elektronów

w powłokach

– zapisuje konfiguracje elektronowe

– rysuje uproszczone modele atomów

– określa zmianę właściwości pierwiastków
w grupie i okresie

 

Uczeń:

wyjaśnia związek między podobieństwami właściwości pierwiastków chemicznych zapisanych w tej samej grupie układu okresowego a budową ich atomów i liczbą elektronów walencyjnych

− wyjaśnia, dlaczego masy atomowe podanych pierwiastków chemicznych w układzie okresowym nie są liczbami całkowitymi

 

 

 

Przykłady wiadomości i umiejętności wykraczające poza treści wymagań podstawy programowej; ich spełnienie może być warunkiem wystawienia oceny celującej.
Uczeń:
– oblicza zawartość procentową izotopów w pierwiastku chemicznym

  • opisuje historię odkrycia budowy atomu i powstania układu okresowego pierwiastków
  • definiuje pojęcie promieniotwórczość
  • określa, na czym polegają promieniotwórczość naturalna i sztuczna
  • definiuje pojęcie reakcja łańcuchowa
  • wymienia ważniejsze zagrożenia związane z promieniotwórczością
  • wyjaśnia pojęcie okres półtrwania (okres połowicznego rozpadu)
  • rozwiązuje zadania związane z pojęciami okres półtrwania i średnia masa atomowa
  • charakteryzuje rodzaje promieniowania
  • wyjaśnia, na czym polegają przemiany α, β

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Łączenie się atomów. Równania reakcji chemicznych

 

Ocena dopuszczająca

[1]

Ocena dostateczna

[1 + 2]

Ocena dobra

[1 + 2 + 3]

Ocena bardzo dobra

[1 + 2 + 3 + 4]

Uczeń:

– wymienia typy wiązań chemicznych

– podaje definicje: wiązania kowalencyjnego niespolaryzowanego, wiązania kowalencyjnego spolaryzowanego, wiązania jonowego

definiuje pojęcia: jon, kation, anion

definiuje pojęcie elektroujemność

posługuje się symbolami pierwiastków chemicznych

podaje, co występuje we wzorze elektronowym

– odróżnia wzór sumaryczny od wzoru

strukturalnego

zapisuje wzory sumaryczne i strukturalne cząsteczek

– definiuje pojęcie wartościowość

– podaje wartościowość pierwiastków

chemicznych w stanie wolnym

odczytuje z układu okresowego

maksymalną wartościowość pierwiastków chemicznych względem wodoru grup 1., 2. i 13.−17.

– wyznacza wartościowość pierwiastków

chemicznych na podstawie wzorów

sumarycznych

– zapisuje wzory sumaryczny i strukturalny cząsteczki związku dwupierwiastkowego na podstawie wartościowości pierwiastków chemicznych

– określa na podstawie wzoru liczbę atomów

pierwiastków w związku chemicznym

interpretuje zapisy (odczytuje ilościowo i jakościowo proste zapisy), np.: H2, 2 H, 2 H2 itp.

ustala na podstawie wzoru sumarycznego nazwę prostych dwupierwiastkowych związków chemicznych

– ustala na podstawie nazwy wzór

sumaryczny prostych

dwupierwiastkowych związków

chemicznych

– rozróżnia podstawowe rodzaje reakcji

chemicznych

wskazuje substraty i produkty reakcji chemicznej

– podaje treść prawa zachowania masy

– podaje treść prawa stałości składu

związku chemicznego

przeprowadza proste obliczenia

z wykorzystaniem prawa zachowania

Uczeń:

opisuje rolę elektronów zewnętrznej powłoki w łączeniu się atomów

odczytuje elektroujemność pierwiastków chemicznych

opisuje sposób powstawania jonów

– określa rodzaj wiązania w prostych

przykładach cząsteczek

− podaje przykłady substancji o wiązaniu

kowalencyjnym i substancji o wiązaniu jonowym

– przedstawia tworzenie się wiązań chemicznych kowalencyjnego i jonowego dla prostych przykładów

określa wartościowość na podstawie układu okresowego pierwiastków

– zapisuje wzory związków chemicznych na podstawie podanej wartościowości lub nazwy pierwiastków chemicznych

– podaje nazwę związku chemicznego

na podstawie wzoru

– określa wartościowość pierwiastków

w związku chemicznym

– zapisuje wzory cząsteczek, korzystając

z modeli

– wyjaśnia znaczenie współczynnika

stechiometrycznego i indeksu stechiometrycznego

– wyjaśnia pojęcie równania reakcji

chemicznej

– odczytuje proste równania reakcji chemicznych

zapisuje równania reakcji chemicznych

− dobiera współczynniki w równaniach

reakcji chemicznych

 

Uczeń:

– określa typ wiązania chemicznego

w podanym przykładzie

wyjaśnia na podstawie budowy atomów, dlaczego gazy szlachetne są bardzo mało aktywne chemicznie

– wyjaśnia różnice między typami wiązań chemicznych

opisuje powstawanie wiązań kowalencyjnych dla wymaganych przykładów

opisuje mechanizm powstawania wiązania jonowego

opisuje, jak  wykorzystać elektroujemność do określenia rodzaju wiązania chemicznego w cząsteczce

– wykorzystuje pojęcie wartościowości

odczytuje z układu okresowego

wartościowość pierwiastków

chemicznych grup 1., 2. i 13.−17. (względem wodoru, maksymalną względem tlenu)

– nazywa związki chemiczne na podstawie wzorów sumarycznych i zapisuje wzory na podstawie ich nazw

– zapisuje i odczytuje równania reakcji

chemicznych (o większym stopniu trudności)

– przedstawia modelowy schemat równania reakcji chemicznej

– rozwiązuje zadania na podstawie prawa zachowania masy i prawa stałości składu związku chemicznego

dokonuje prostych obliczeń stechiometrycznych

Uczeń:

– wykorzystuje pojęcie elektroujemności do określania rodzaju wiązania w podanych substancjach

–  uzasadnia i udowadnia doświadczalnie, że masa substratów jest równa masie produktów

– rozwiązuje trudniejsze zadania dotyczące poznanych praw (zachowania masy, stałości składu związku chemicznego)

– wskazuje podstawowe różnice między wiązaniami kowalencyjnym a jonowym oraz kowalencyjnym niespolaryzowanym a kowalencyjnym spolaryzowanym

– opisuje zależność właściwości związku chemicznego od występującego w nim wiązania chemicznego

porównuje właściwości związków kowalencyjnych i jonowych (stan skupienia, rozpuszczalność w wodzie, temperatury topnienia i wrzenia, przewodnictwo ciepła i elektryczności)

– zapisuje i odczytuje równania reakcji chemicznych o dużym stopniu trudności

– wykonuje obliczenia stechiometryczne

 

 

 

 

Przykłady wiadomości i umiejętności wykraczające poza treści wymagań podstawy programowej; ich spełnienie może być warunkiem wystawienia oceny celującej.
Uczeń:

  • opisuje wiązania koordynacyjne i metaliczne

– wykonuje obliczenia na podstawie równania reakcji chemicznej

– wykonuje obliczenia z wykorzystaniem pojęcia wydajność reakcji

– zna pojęcia: mol, masa molowa i objętość molowa i wykorzystuje je w obliczeniach

  • określa, na czym polegają reakcje utleniania-redukcji
  • definiuje pojęcia: utleniacz i reduktor
  • zaznacza w zapisie słownym przebiegu reakcji chemicznej procesy utleniania i redukcji oraz utleniacz, reduktor
  • podaje przykłady reakcji utleniania-redukcji zachodzących w naszym otoczeniu; uzasadnia swój wybór


Woda i roztwory wodne

 

Ocena dopuszczająca

[1]

Ocena dostateczna

[1 + 2]

Ocena dobra

[1 + 2 + 3]

Ocena bardzo dobra

[1 + 2 + 3 + 4]

Uczeń:

– charakteryzuje rodzaje wód występujących

w przyrodzie

– podaje, na czym polega obieg wody

w przyrodzie

– podaje przykłady źródeł zanieczyszczenia wód

– wymienia niektóre skutki zanieczyszczeń oraz sposoby walki z nimi

– wymienia stany skupienia wody

– określa, jaką wodę nazywa się wodą destylowaną

– nazywa przemiany stanów skupienia wody

– opisuje właściwości wody

– zapisuje wzory sumaryczny i strukturalny

cząsteczki wody

– definiuje pojęcie dipol

– identyfikuje cząsteczkę wody jako dipol

– wyjaśnia podział substancji na dobrze rozpuszczalne, trudno rozpuszczalne oraz praktycznie nierozpuszczalne w wodzie

podaje przykłady substancji, które

rozpuszczają się i nie rozpuszczają się

w wodzie

– wyjaśnia pojęcia: rozpuszczalnik i substancja

rozpuszczana

projektuje doświadczenie dotyczące rozpuszczalności różnych substancji w wodzie

– definiuje pojęcie rozpuszczalność

– wymienia czynniki, które wpływają

na rozpuszczalność substancji

– określa, co to jest krzywa rozpuszczalności

odczytuje z wykresu rozpuszczalności

rozpuszczalność danej substancji w podanej

temperaturze

– wymienia czynniki wpływające na szybkość

rozpuszczania się substancji stałej w wodzie

– definiuje pojęcia: roztwór właściwy, koloid

i zawiesina

– podaje przykłady substancji tworzących z wodą roztwór właściwy, zawiesinę, koloid

– definiuje pojęcia: roztwór nasycony, roztwór nienasycony, roztwór stężony, roztwór rozcieńczony

– definiuje pojęcie krystalizacja

– podaje sposoby otrzymywania roztworu nienasyconego z nasyconego i odwrotnie

– definiuje stężenie procentowe roztworu

– podaje wzór opisujący stężenie procentowe roztworu

prowadzi proste obliczenia z wykorzystaniem pojęć: stężenie procentowe, masa substancji, masa rozpuszczalnika, masa roztworu

Uczeń:

opisuje budowę cząsteczki wody

– wyjaśnia, co to jest cząsteczka polarna

– wymienia właściwości wody zmieniające

się pod wpływem zanieczyszczeń

– planuje doświadczenie udowadniające, że woda: z sieci wodociągowej i naturalnie występująca w przyrodzie są mieszaninami

proponuje sposoby racjonalnego gospodarowania wodą

tłumaczy, na czym polegają procesy mieszania i rozpuszczania

– określa, dla jakich substancji woda jest

dobrym rozpuszczalnikiem

– charakteryzuje substancje ze względu na ich

rozpuszczalność w wodzie

planuje doświadczenia wykazujące wpływ

różnych czynników na szybkość

rozpuszczania substancji stałych w wodzie

– porównuje rozpuszczalność różnych

substancji w tej samej temperaturze

oblicza ilość substancji, którą można rozpuścić w określonej objętości wody

w podanej temperaturze

– podaje przykłady substancji, które

rozpuszczają się w wodzie, tworząc

roztwory właściwe

podaje przykłady substancji, które nie rozpuszczają się w wodzie, tworząc koloidy lub zawiesiny

– wskazuje różnice między roztworem

właściwym a zawiesiną

opisuje różnice między roztworami:

rozcieńczonym, stężonym, nasyconym

i nienasyconym

– przekształca wzór na stężenie procentowe

roztworu tak, aby obliczyć masę substancji

rozpuszczonej lub masę roztworu

oblicza masę substancji rozpuszczonej lub

masę roztworu, znając stężenie procentowe

roztworu

– wyjaśnia, jak sporządzić roztwór o określonym stężeniu procentowym, np. 100 g 20-procentowego roztworu soli kuchennej

Uczeń:

– wyjaśnia, na czym polega tworzenie

wiązania kowalencyjnego spolaryzowanego

w cząsteczce wody

– wyjaśnia budowę polarną cząsteczki wody

– określa właściwości wody wynikające z jej

budowy polarnej

przewiduje zdolność różnych substancji do rozpuszczania się w wodzie

– przedstawia za pomocą modeli proces

rozpuszczania w wodzie substancji o budowie polarnej, np. chlorowodoru

– podaje rozmiary cząstek substancji

wprowadzonych do wody i znajdujących się

w roztworze właściwym, koloidzie,

zawiesinie

– wykazuje doświadczalnie wpływ różnych

czynników na szybkość rozpuszczania

substancji stałej w wodzie

– posługuje się wykresem rozpuszczalności

– wykonuje obliczenia z wykorzystaniem

wykresu rozpuszczalności

– oblicza masę wody, znając masę roztworu

i jego stężenie procentowe

– prowadzi obliczenia z wykorzystaniem

pojęcia gęstości

podaje sposoby zmniejszenia lub zwiększenia stężenia roztworu

– oblicza stężenie procentowe roztworu

powstałego przez zagęszczenie i rozcieńczenie

roztworu

oblicza stężenie procentowe roztworu

nasyconego w danej temperaturze

(z wykorzystaniem wykresu rozpuszczalności)

– wymienia czynności prowadzące

do sporządzenia określonej objętości roztworu

o określonym stężeniu procentowym

– sporządza roztwór o określonym stężeniu

procentowym

 

Uczeń:

– proponuje doświadczenie udowadniające,

że woda jest związkiem wodoru i tlenu

– określa wpływ ciśnienia atmosferycznego na wartość temperatury wrzenia wody

porównuje rozpuszczalność w wodzie związków kowalencyjnych i jonowych

– wykazuje doświadczalnie, czy roztwór jest

nasycony, czy nienasycony

– rozwiązuje z wykorzystaniem gęstości zadania rachunkowe dotyczące stężenia procentowego

– oblicza rozpuszczalność substancji w danej

temperaturze, znając stężenie procentowe jej

roztworu nasyconego w tej temperaturze

– oblicza stężenie roztworu powstałego po zmieszaniu roztworów tej samej substancji o różnych stężeniach

 

 

Przykłady wiadomości i umiejętności wykraczające poza treści wymagań podstawy programowej; ich spełnienie może być warunkiem wystawienia oceny celującej.
Uczeń:

– wyjaśnia, na czym polega asocjacja cząsteczek wody

– rozwiązuje zadania rachunkowe na stężenie procentowe roztworu, w którym rozpuszczono mieszaninę substancji stałych

– rozwiązuje zadania z wykorzystaniem pojęcia stężenie molowe


Tlenki i wodorotlenki

 

Ocena dopuszczająca

[1]

Ocena dostateczna

[1 + 2]

Ocena dobra

[1 + 2 + 3]

Ocena bardzo dobra

[1 + 2 + 3 + 4]

Uczeń:

definiuje pojęcie katalizator

– definiuje pojęcie tlenek

– podaje podział tlenków na tlenki metali i tlenki niemetali

zapisuje równania reakcji otrzymywania tlenków metali i tlenków niemetali

– wymienia zasady BHP dotyczące pracy z zasadami

definiuje pojęcia wodorotlenek i zasada

– odczytuje z tabeli rozpuszczalności, czy wodorotlenek jest rozpuszczalny w wodzie czy też nie

opisuje budowę wodorotlenków

– zna wartościowość grupy wodorotlenowej

– rozpoznaje wzory wodorotlenków

zapisuje wzory sumaryczne wodorotlenków: NaOH, KOH, Ca(OH)2, Al(OH)3, Cu(OH)2

opisuje właściwości oraz zastosowania wodorotlenków: sodu, potasu i wapnia

– łączy nazwy zwyczajowe (wapno palone i wapno gaszone) z nazwami systematycznymi tych związków chemicznych

definiuje pojęcia: elektrolit, nieelektrolit

− definiuje pojęcia: dysocjacja jonowa, wskaźnik

– wymienia rodzaje odczynów roztworów

– podaje barwy wskaźników w roztworze o podanym odczynie

wyjaśnia, na czym polega dysocjacja jonowa zasad

zapisuje równania dysocjacji jonowej zasad (proste przykłady)

− podaje nazwy jonów powstałych w wyniku dysocjacji jonowej

odróżnia zasady od innych substancji za pomocą wskaźników

– rozróżnia pojęcia wodorotlenek i zasada

 

Uczeń:

– podaje sposoby otrzymywania tlenków

opisuje właściwości i zastosowania wybranych tlenków

– podaje wzory i nazwy wodorotlenków

– wymienia wspólne właściwości zasad i wyjaśnia, z czego one wynikają

– wymienia dwie główne metody otrzymywania wodorotlenków

zapisuje równania reakcji otrzymywania wodorotlenku sodu, potasu i wapnia

– wyjaśnia pojęcia woda wapienna, wapno palone i wapno gaszone

– odczytuje proste równania dysocjacji jonowej zasad

– definiuje pojęcie odczyn zasadowy

– bada odczyn

– zapisuje obserwacje do przeprowadzanych na lekcji doświadczeń

Uczeń:

– wyjaśnia pojęcia wodorotlenek i zasada

– wymienia przykłady wodorotlenków i zasad

– wyjaśnia, dlaczego podczas pracy z zasadami należy zachować szczególną ostrożność

– wymienia poznane tlenki metali, z których
   otrzymać zasady

– zapisuje równania reakcji otrzymywania wybranego wodorotlenku

planuje doświadczenia, w których wyniku można otrzymać wodorotlenki sodu, potasu lub wapnia

– planuje sposób otrzymywania wodorotlenków nierozpuszczalnych w wodzie

zapisuje i odczytuje równania dysocjacji jonowej zasad

określa odczyn roztworu zasadowego i uzasadnia to

– opisuje doświadczenia przeprowadzane na lekcjach (schemat, obserwacje, wniosek)

opisuje zastosowania wskaźników

planuje doświadczenie, które umożliwi zbadanie odczynu produktów używanych w życiu codziennym

Uczeń:

– zapisuje wzór sumaryczny wodorotlenku dowolnego metalu

planuje doświadczenia, w których wyniku można otrzymać różne wodorotlenki, także praktycznie nierozpuszczalne w wodzie

zapisuje równania reakcji otrzymywania różnych wodorotlenków

– identyfikuje wodorotlenki na podstawie podanych informacji

– odczytuje równania reakcji chemicznych

 

 

 

Przykłady wiadomości i umiejętności wykraczające poza treści wymagań podstawy programowej; ich spełnienie może być warunkiem wystawienia oceny celującej.
Uczeń:

– opisuje i bada właściwości wodorotlenków amfoterycznych